
Metal Compute Shaders 
And C++



What is Metal?

• Shading language released by Apple in 2014


• Provides Graphics / Compute capabilities


• Most recent release in 2022 (v3.0)


• Not Cross-Platform



Why Metal?

• Apple silicon processors have capable GPUs


• "APU" style architecture


• Large amount of memory



Why Metal?

• Apple silicon processors have capable GPUs


• "APU" style architecture


• Large amount of memory


• Apple is killing off their other GPGPU options



Why Metal?



Recent Developments

Until recently, Metal was primarily aimed at Swift and Objective-C



Recent Developments
• In 2022 Apple released "Metal-cpp"


• some headers that provides a way to interact with Metal from C++


• they provide a few examples of using Metal with C++, but ...


• those examples are almost exclusively the graphics pipeline



Recent Developments
• In 2022 Apple released "Metal-cpp"


• some headers that provides a way to interact with Metal from C++


• they provide a few examples of using Metal with C++, but ...


• those examples are almost exclusively the graphics pipeline


• This weekend, I bit the bullet and tried porting some Metal-Objective-C 
compute examples to Metal-C++



Initial Port

Metal-cpp made porting easier than expected

Objective C

C++



Example Code Walkthrough 1:
https://github.com/samuelpmish/metal_cpp_compute/blob/main/examples/saxpby.cpp

https://github.com/samuelpmish/metal_cpp_compute/blob/main/examples/saxpby.cpp


Metal CUDA / C++

kernel __global__

threadgroup (attribute) __shared__

grid* grid*

threadgroup (launch parameter) block

device device

library translation unit

CommandQueue stream

CommandBuffer/ComputeCommandEncoder/
ComputePipelineState <<< ... >>>

Buffer (container) cudaMalloc

Metal / CUDA Cheatsheet



Metal Kernel Launch



Example Code Walkthrough 2:

https://github.com/samuelpmish/metal_cpp_compute/blob/main/examples/vertex_relaxation.cpp

https://www.smish.dev/math/mesh_relaxation/

https://github.com/samuelpmish/metal_cpp_compute/blob/main/examples/vertex_relaxation.cpp
https://www.smish.dev/math/mesh_relaxation/
https://www.smish.dev/math/mesh_relaxation/


Example Code Walkthrough 2:

https://github.com/samuelpmish/metal_cpp_compute/blob/main/examples/vertex_relaxation.cpp

https://www.smish.dev/math/mesh_relaxation/

https://github.com/samuelpmish/metal_cpp_compute/blob/main/examples/vertex_relaxation.cpp
https://www.smish.dev/math/mesh_relaxation/
https://www.smish.dev/math/mesh_relaxation/


Writing a Metal Wrapper

• Try to eliminate boilerplate


• Build in as much type-safety (as practical)


• Make it "feel" like CUDA runtime-API


• Automate lifetime management

Goals:



Writing a Metal Wrapper

https://github.com/samuelpmish/metal_cpp_compute/blob/main/examples/saxpby_with_wrapper.cpp

https://github.com/samuelpmish/metal_cpp_compute/blob/main/examples/saxpby_with_wrapper.cpp


Summary
• Easier than I expected


• The good:


• Performance 


• Programming model


• Some significant downsides


• boilerplate, type safety


• no double precision support


• portability



Summary
• Easier than I expected


• The good:


• Performance 


• Programming model


• Some significant downsides


• boilerplate, type safety


• no double precision support


• portability

can write wrappers 

to help address



Summary
• Easier than I expected


• The good:


• Performance 


• Programming model


• Some significant downsides


• boilerplate, type safety


• no double precision support


• portability

can make algorithmic changes 

(e.g. compensated summation)


 to help address



Summary
• Easier than I expected


• The good:


• Performance 


• Programming model


• Some significant downsides


• boilerplate, type safety


• no double precision support


• portability How to handle?



slang
• shading (meta)language


• slang transpiles to C++/CUDA/Metal/WGPU/Vulkan/D3D


• supports cool language features:


• full compute / graphics (raster and ray tracing) capabilities


• static reflection


• statically analyzable automatic differentiation (fwd/bwd)



https://shader-slang.com/slang-playground/

https://shader-slang.com/slang-playground/

