Metal Compute Shaders

And C++

What is Metal?

e Shading language released by Apple in 2014
* Provides Graphics / Compute capabilities

 Most recent release in 2022 (v3.0)

e Not Cross-Platform

Why Metal?

* Apple silicon processors have capable GPUs
« "APU" style architecture

 Large amount of memory

Why Metal?

* Apple silicon processors have capable GPUs
« "APU" style architecture
 Large amount of memory

* Apple is Killing off their other GPGPU options

Why Metal?

O,pen?:I: .

Transition to Metal

If you're using OpenCL, which was deprecated in macOS 10.14, for GPU-based
computational tasks in your Mac app, we recommen

L g
@& Developer
Metal Performance Shaders for accesstoaw

OpenGL Programming Guide for Mac

Learn about Metal »

Retired Document @

Important: OpenGL was deprecated in macOS 10.14. To create high-
performance code on GPUs, use the Metal framework instead. See Metal.

Recent Developments

Language v Swift changes: Show v
Objective-C

- { & JFL:‘J .:_-‘ WO {

Metal

Render advanced 3D graphics and compute data in parallel with
graphics processors.

iOS 8.0+ | iPadOS 8.0+ | Mac Catalyst 13.0+ | macOS 10.11+ | tvOS 9.0+ | visionOS 1.0+

Until recently, Metal was primarily aimed at Swift and Objective-C

Recent Developments

e |In 2022 Apple released "Metal-cpp"”
 some headers that provides a way to interact with Metal from C++
* they provide a few examples of using Metal with C++, but ...

* those examples are almost exclusively the graphics pipeline

Recent Developments

e |In 2022 Apple released "Metal-cpp"”
 some headers that provides a way to interact with Metal from C++
* they provide a few examples of using Metal with C++, but ...

* those examples are almost exclusively the graphics pipeline

 This weekend, | bit the bullet and tried porting some Metal-Objective-C
compute examples to Metal-C++

Obijective C

C++

Initial Port

[computeEncoder setComputePipelineState: _mAddFunctionPSO];

| computeEncoder setBuffer: _mBufferA offset:0 atIndex:0];

[computeEncoder setBuffer: mBufferB offset:0 atIndex:1];

| computeEncoder setBuffer: _mBufferResult offset:0 atIndex:2];

computeEncoder->setComputePipelineState(_mAddFunctionPS0);
computeEncoder->setBuffer(_mBufferA, 0, 0);
computeEncoder->setBuffer(_mBufferB, 0, 1);
computeEncoder->setBuffer(_mBufferResult, 0, 2);

Metal-cpp made porting easier than expected

Example Code Walkthrough 1:

https://github.com/samuelpmish/metal cpp compute/blob/main/examples/saxpby.cpp

https://github.com/samuelpmish/metal_cpp_compute/blob/main/examples/saxpby.cpp

Metal / CUDA Cheatsheet

Metal CUDA / C++

kernel __global__
"""""""""""""""""""""""""""" mosdgowp bt e
''
"""""""""""""""""""""""" modgoup archpuame®) ek
""
e
''''''''''''''''''''''''''''''''''''''
"""""""""""" CommandBuffer/ComputeCommandEncoder/ | ___
___ gkl TSRS

Buffer (container) cudaMalloc

Metal Kernel Launch

\'4
Command Encoder

V

Command Buffer

Example Code Walkthrough 2:

https:.//www.smish.dev/math/mesh relaxation/

https://github.com/samuelpmish/metal cpp compute/blob/main/examples/vertex relaxation.cpp

https://github.com/samuelpmish/metal_cpp_compute/blob/main/examples/vertex_relaxation.cpp
https://www.smish.dev/math/mesh_relaxation/
https://www.smish.dev/math/mesh_relaxation/

Example Code Walkthrough 2:

https:.//www.smish.dev/math/mesh relaxation/

https://github.com/samuelpmish/metal cpp compute/blob/main/examples/vertex relaxation.cpp

sam@mozzarella examples % ./vertex_relaxation
vertex relaxation time (CPU, thread) .898ms

vertex relaxation time (CPU, threads) .543ms
vertex relaxation tume (GPU) . 7406ms

https://github.com/samuelpmish/metal_cpp_compute/blob/main/examples/vertex_relaxation.cpp
https://www.smish.dev/math/mesh_relaxation/
https://www.smish.dev/math/mesh_relaxation/

Writing a Metal Wrapper

(Goals:

Try to eliminate bollerplate
Build in as much type-safety (as practical)

Make it "feel"” like CUDA runtime-API

Automate lifetime management

Writing a Metal Wrapper

https://github.com/samuelpmish/metal cpp compute/blob/main/examples/saxpby with wrapper.cpp

https://github.com/samuelpmish/metal_cpp_compute/blob/main/examples/saxpby_with_wrapper.cpp

Summary

 Easier than | expected
 The good:
* Performance
 Programming model
 Some significant downsides
* boilerplate, type safety
* No double precision support

» portability

Summary

 Easier than | expected
 The good:

 Performance |
can write wrappers

to help address

 Programming model

 Some significant downsides

* boilerplate, type safety

* No double precision support

» portability

Summary

 Easier than | expected
 The good:

e Performance

. Programming model can make algorithmic changes
(e.g. compensated summation)
 Some significant downsides

to help address
* boilerplate, type safety /

no double precision support

» portability

Summary

 Easier than | expected
 The good:
* Performance
 Programming model
 Some significant downsides
* boilerplate, type safety

* No double precision support

. <4——— How to handle?

slang

e shading (meta)language
* slang transpiles to C++/CUDA/Metal/WGPU/Vulkan/D3D
e supports cool language features:
* full compute / graphics (raster and ray tracing) capabillities
 static reflection

» statically analyzable automatic differentiation (fwd/bwd)

https://shader-slang.com/slang-playground/

https://shader-slang.com/slang-playground/

